python - Difference between functions generating random numbers in numpy -
i trying understand difference, if any, between these functions:
numpy.random.rand() numpy.random.random() numpy.random.uniform()
it seems produce random sample uniform distribution. so, without parameter in function, there difference?
numpy.random.uniform(low=0.0, high=1.0, size=none)
- uniform samples arbitrary range
draw samples uniform distribution.
samples uniformly distributed on half-open interval[low, high)
(includes low, excludes high). in other words, value within given interval equally drawn uniform.
numpy.random.random(size=none)
- uniform distribution between 0 , 1
return random floats in half-open interval
[0.0, 1.0)
.
results “continuous uniform” distribution on stated interval. sampleunif[a, b)
,b > a
multiply output ofrandom_sample by
(b-a) , add a:
(b - a) * random_sample() + a
numpy.random.rand(d0, d1, ..., dn)
- samples uniform distribution populate array of given shape
random values in given shape.
create array of given shape , propagate random samples uniform distribution on[0, 1)
.
to answer other question, given default parameters of functions numpy.random.uniform
, numpy.random.random
, , numpy.random.rand
identical.
Comments
Post a Comment